
III

OtlCOpy

Mt UMIACS-TR-90-51 April 1990
CS-TR -2450

1%, A Software-System Visualization Tool
John R. Callahan

CDepartment of Computer Science
University of Maryland

College Park. MD 20742

James A!. Purtilo
Institute for Advanced Computer Studies and

Department of Computer Science
University of Iarviand

College Park. NID 20742

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

DTIC
7 ELECTES OCT0319900

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742 * ...
CLEARED

'U i ,LA (ION -

SEP27 W
0 1O A t O k Fif OM 0t IN PUdM ATIONcunr tVF, 1 ~ j'"t H' ' " 90 4 59 /

AND 1 CURI ry HF.,,,F (O4SO -PA)
"iD PA!@IMFNT 0O" OEFF NSt 9.. • 4 59 -/

UMIACS-TR-90-51 April 1990
CS-TR -2450

A Software-System Visualization Tool A,,co:,2cn -For
John R. Callahan NIS GRAII

Department of Computer Science DTIC TABUin "zrunced] ,

University of Maryland j. 1fCat 1OL

College Park, MD 20742

James M. Purtilo By

Institute for Advanced Computer Studies and Distribution/

Department of Computer Science Availability Codes

University of Maryland Avail and/or

College Park, MD 20742 Distj Special

Abstract

Minion is a visual link editor used to configure and instrument software systems. It was
originally developed as a general-purpose graph editor for use in many task domains where
connected graphs appropriately model logical structures. A software system, for example. can
be represented by a connected graph - nodes and edges of the graph correspond respectively
to large-grain software modules (e.g., programs. files. databases. servers) and the dependencies
established between these modules (e.g., procedure calls, message passing channels). \Ve use
the tool to write, visualize, and execute specifications for heterogeneous. distributed software
applications in the Polylith module interconnection environment. Our tool complements use of
the Polylith textual module interconnection language (MIL) because Minion is used as a link
editor that reads and writes MIL specifications. Through the use of windows, icons. menus.
and other means of direct manipulation, users can edit MIL specs as graphs in order to perform
complex configuration management tasks which may be tedious to denote directly in the MIL. -

This research is supported by Honeywell and the DARPA/ISTO Common Prototyping Lan-
guage initiative, with oversight provided by Office of Naval Research.

L71

1 INTRODUCTION

This paper describes details of the MINION link editor, a visual configuration management tool
developed for the POLYLITH module interconnection environment. In MINION, software systems
are represented by connected graphs for purposes of visualization, construction, and instrumen-
tation. Nodes and edges of a graph correspond respectively to large-grain software modules (e.g.
programs, databases) and the dependencies established between modules (e.g., procedure calls.
channels). Through the use of windows, icons, menus, and direct manipulations, MINION users
can edit these graphs in order to perform complex configuration management tasks which may
be tedious in textual approaches.

Module interconnection languages (MILs) have largely been textual and POLYLITH is no exception.
MINION complements, rather than rivals, our textual approach. Either MINION or the POLYLITH
MIL may be used to describe the structure of software systems. MINION, however. ,asily facilitates
quick prototyping, visualization, and instrumentation tasks which would require* :. ensive editing
of POLYLITH MIL specifications. For example, we can graphically attach "listeners" to all edges
of a graph in order to monitor message passing activities. Such a task would require tedious
editing of all bindings expressed in a textual specification. The MINION link editor reads in
textual POLYLITH descriptions of software systems and displays them as connected graphs. Users
may then manipulate the components of graphs and generate new textual descriptions of the
systems as needed. This complements use of the POLYLITH MIL as a textual representation of the
structure of software systems. Thus, users are not limited to text editors when designing software
systems. They may leverage the advantages of graphical representations against the complexity
of large-grain configuration programming tasks.

In either case, it is our intent to expedite the construction and manipulation of the logical
structure of software systems. Abstractly, program components, called modules, can be bound
together into systems. In POLYLITH, these modules may be written in different programming
languages and reside in shared or separate protection domains (i.e., file systems. memory spaces.
machines). Module composition mechanisms must manage communication and control across
these domain boundaries. A POLYLITH run-time system, called a software bus, abstractly repre-
sents the specific connections built from descriptions of particular systems of modules. For this
reason, the POLYLITH MIL is an extensible, object-oriented language designed to accommodate
the properties of many diverse programming languages and protection domains.

Configuration management tools are forced to operate in these diverse and dynamic environments.
To this end, MINION is also a run-time entity. It may be used in conjunction with local debugging
tools. One can monitor the state of software modules and their links to other components. For
example, users can suspend execution of processes, examine the value of module variables, and
monitor occurrences of local and remote procedure calls. Through the use of animation, users
can visualize the paths of execution in a software system in order to identify problems, isolate
bottlenecks, and test solutions. In this role, MINION has been valuable to us as a debugging and
prototyping tool.

2

In this paper, we will examine some examples of visual configuration programming. First, we

present more details of the POLYLITH module interconnection language and environment. Next,
we use MINION in the visual construction and execution of an example software system. Finally,
we discuss some of the implementation issues involved in developing MINION.

2 POLYLITH

Software components in POLYLITH are written in different programming languages and reside in
different protection domains. They can be described abstractly, however, through the use of

object specifications. Because POLYLITH is object-oriented, specifications need not list all of their

properties explicitly, but can inherit some properties from their environments implicitly.

POLYLITH specifications come in two types: modules and systems. A module may be a description
of almost anything - a file, program, database, or a set of procedures and functions. It is
simply a software object that advertises a set of properties. A module's type is determined
by the set of properties it contains. For example, program modules can contain procedural

interface descriptions. Abstractly, an interface describes a provided or used resource (e.g., a set
of exported and imported procedures). A program module may also contain information about

its implementation characteristics: a source file name, object file name, binary file name. symbol
table, compiler, linker, and machine location. Default values for some properties are bound

late in the configuration process or during execution through inheritance and parameterization
mechanisms.

A system description creates, binds, and parameterizes instances of module descriptions to-
gether into a single application that may cross language boundaries and protection domains.
Figures 1 and 2 display program module descriptions and a system description for the Dining
Philosophers problem [Dijk65] implemented in POLYLITH. In the Dining Philosophers problem.
we place n diners and n forks alternately around a table with a bowl of rice in the center. Each

diner must use two adjacent forks to eat. Once finished eating, a philosopher release the forks.
thinks for a period of time, and repeats the cycle. We must implement a system of such processes
such that there is no deadlock (i.e., a stalemate over forks) and that all diners will eventually eat.
In this example, the system description creates three instances of each module type and binds
them explicitly by linking source and sink interfaces. Each diner instance represents the start of
a separate thread of control because it contains a main interface. Fork instances do not contain

main interfaces and act as servers that accommodate a single thread of control at a time (the
default for program modules with no main interface).

The three POLYLITH specifications are configured, into a single description that when executed
constructs the connections necessary to implement the system in a particular execution envi-
ronment. If the appropriate components are accessible, a software bus is built and the system

begins execution. A software bus is an abstraction that represents a collection of message-passing
stubs, local and remote procedure call stubs, and communication channels. Components may be

3

module "Diner" : { module "Fork"
implementation: { implementation: {

machine: "flubber.es.umd.edu" machine : "brillig.umd.edu"
source : "diner.c" source : "fork.p"

main : true main : false
source "reqRght" : { } multisink "listen" : { }
sink "getRght" : { } multisource "grant" : { }
source "reqLeft" : { } multisink "release": { }
sink "getLeft" : { } client "writeln": { string
source "relRght" : { } => { }
source "relLeft" { } }
client "printf" : { string

{ integer } { string }
=> { integer }

f

Figure 1: POLYLITH module specifications for the Dining Philosophers problem.

system "Dining Philosophers"
tool "Diner 1" : "Diner"
tool "Diner 2" : "Diner"
tool "Diner 3" "Diner"
tool "Fork 1" : "Fork"
tool "Fork 2" : "Fork"
tool "Fork 3" : "Fork"

bind "Diner 1" "reqLeft" to "Fork " "Listen"
bind "Diner 1" "getLeft" to "Fork 1" "grant"
bind "Diner 1" "relLeft" to "Fork 1" "release
bind "Diner 1" "reqRght" to "Fork 3" "listen"
bind "Diner I" "getRght" to "Fork 3" "grant"
bind "Diner 1" "relRght" to "Fork .3" "release"
bind "Diner 2" "reqLeft" to "Fork 2" "listen"
bind "Diner 2" "getLeft" to "Fork 2" "grant"
bind "Diner 2" "relLeft" to "Fork 2" "release
bind "Diner 2" "reqRght" to "Fork 1" "listen"
bind "Diner 2" "getRght" to "Fork 1" "grant"
bind "Diner 2" "relRght" to "Fork I" "release"
bind "Diner 3" "reqLeft" to "Fork 3" 'listen"
bind "Diner 3" "getLeft" to "Fork 3" "grant"
bind "Diner 3" "relLeft" to "Fork 3" "release
bind "Diner 3" "reqRght" to "Fork 2" "listen"
bind "Diner 3" "getRght" to "Fork 2" "grant"

bind "Diner 3" "relRght" to "Fork 2" "release"

Figure 2: A POLYLITH system specification for the Dining Philosophers problem.

4

connected together directly via whatever communication channels are common to connected com-
ponents (e.g., TCP sockets) or they may communicate through a common, centralized message
handler. The process of building a software bus is complex and is covered in detail in [Purt86].

3 CONSTRUCTION

We shall construct a connected graph using MINION that will correspond to the system speci-
fication in Figure 2 using diner and fork module specifications. We will assume that these are
made available from POLYLITH libraries and symbol extraction tools [PuCa89]. Nodes and edges
of the graph will represent instances and bindings respectively. Figure 3 illustrates the first step
of this process. The diner and fork specifications are listed as modules in the MINION palate. The
palate holds descriptions for modules listed in the user's file system (e.g., a current directory).
Components may also be found in module libraries. In Figure 4, the user copies these onto the
MINION viewport as instances. In this case, instances are numbered, but the user can attach any
name to an instance or parameterize MINION with procedures for generating instance names.

Next. the user creates links between modules by joining the appropriate interfaces. Specific
interfaces of different modules are linked individually by drawing edges from one instance to
another. In order to select the interface to be bound, each instance has a disposition: it is either
active or inactive. One can change a node's disposition by selecting an interface from its instance
menu. If any of the interfaces are chosen, then the node is activated. An active node is said to
be available on one of its interfaces. Figure 5 illustrates the use of an interface menu. One of the
fork instances (Fork 1) is currently active on its grant interface, while the disposition the diner
instance (Diner 1) is being changed. The other fork instance (Fork 2) is inactive. An instance
changes its iconic labeling to reflect its "current" disposition'

Links are created in many ways in MINION. One can select a node by pressing a mouse button
over it. dragging the mouse, and releasing the button once over another node. The two nodes
may be active or inactive. If they are active, this called an interface join because two specific
interfaces are joined together explicitly. After the link is complete. the two instances become
inactive. If one or both nodes are inactive, unbound interfaces are joined by name and type.
This is called an unspecified join because it is implicit. A prompt window is displayed which asks
the user to verify the implicit bindings. This feature may be disabled in order to bind whole
systems silently. In addition to these node-to-node linking mechanisms, MINION permits selection
of groups of nodes to be bound implicitly by name and type. In our example. the diners and forks
do not share interface names and their types are void because no arguments are passed within
messages.

Implicit bindings are also a part of the textual POLYLITH MIL through the use of grammatical
scoping mechanisms and inheritance, but they remain conceptually transparent to the designer.

'in later versions of MINION, arbitrary PostScript code will be used to describe iconic representations of
dispositions.

5

xx

.

W.. 4

X

..

UR. I'M- NUR.....M.....................
R.An.m.. N.

MN
Wj:

Infa LH-Diner
N.

C.M.I. RH Di,,.r
-UM.W.
..........

alae Fcrk Iffi
Liftries a 4-

.....

Color K

Hid S:

Gut

Mr
cc OWN.W.M.:

xx;.x ,,xxe.
:ox X

..........

.......

"M

....... ..

Figure 3: An empty MINION viewport with attached frame and palate menus.

6

t.~H Diner

Is RH DiNner IFd

Fork

Fiue4:Tre ntncscpidfomteparetoteestNviwot

An implicit binding may be incorrect (e.g., a misspelling) but undetectable prior to compilation.
A MINION user can view these implicitly constructed connections and notice incorrect links to
library modules and "regions" of a graph. We can scale and reconfigure graphs interactively and
selectively view subgraphs of a system in order to isolate binding problems. Consider the graph
in Figure 6. We can compare it with an equivalent textual description in Figure 7. The error
seems much more obvious from viewing the graph because we know that solutions to the Dining
Philosophers problem are structurally cyclic in general.

Figure 8 is a snapshot of the completed graph. Each link represents three connections (i.e..
request, get, release). Links can be viewed in two ways: through the link or a node. By clicking
on the link. the connected node labels will cycle through the connections, i.e., the node labels
and arrows on different edges will change with each click of a mouse button on the link. Thfis
has been done in Figure 8. An arrow is displayed showing the direction of the message channel
and the connected nodes display the names of the relevant interfaces. Alternatively, one can
select an already bound interface from an instance menu and view the -xistence of a particular
connection. Links between two modules can be split and joined in order to present a system in
the most graphically pleasing manner.

4 EXECUTION

We can now build an executable image of our system and run it. During execution, the MINION

tool is iconified and windows are created for each instance as specified by their module descrip-
tions. By default, each instance gets a window that represents its standard input and output

channels. For example, diner instances have a window tool associated with them, but fork in-
stances simply print a log of their activities to their standard output channels. The diner windows
have four labels that highlight to show the state of the program - requesting, eating, releasing,
or thinking. Normally, the default windows are not displayed. Figure 9 illustrates execution of
the three philosopher example. Three customized windows are created which graphically display
the activities of each philosopher.

In the bottom left corner of the screen in Figure 9, the designer uses the icon menu to get a default
window for one of the forks. Once selected, this window appears and shows a log of fork states as
printed on its standard output channel. Default windows can also be used to debug modules. We

can suspend execution and examine the state of module variable, using local debugging tools.

During execution, the MINION viewport visually depicts message passing activities by labeling
nodes and shading edges. The user can speed up, slow down, or step through message passing
activities. In Figure 9, we notice that the system is in a deadlocked state - all diners windows are

labeled "Requesting ... ". In Figure 10, we show the MINION viewport also in a state of deadlock.
During execution, dark directed edges represent messages sent but unreceived. Light directed

edges denote recently sent and received messages, i.e., the last message sent. All three of the
diner instances are labeled "RH.Diner X: getLeft" because that was the last interface used by

8

Inf" x [LH DinerC ntrol __H- ie

i 4 Hie ii[......
Colori''i.'ji

Rp:-E:.

R Diner Itgt,:::..

i iRHDiner 1" eIet-:g.",I=;;:
!.RH Diner)I: rght :==~
iiRH Diner 1: MeR ht'' i...,;=:

RHDiner 1: reqLeft i'-ii'

Figure 5: Changing an instance's disposition.

--_ :=- .. . Mp ,... ..- K:

....... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~,..........::::::::::::::::::::::::::::::::::::
P a la te F C .,' ' ": i :i i:

Lira ie ... , I ,,, K-.- "...........~m.
-..

.... ': : ; ,',, =....= == w=== ======

i it i -.'4 ii~it71! l .i: N::'

-I ...l :.........': .:".
:.,:.M.N' ..I=; Hide ...i' ...'!

Quit..ij: .. ~i~i lllll~:.ll;l.:l-

" llll........
flJ=U--M.A~w UiN !. -. l:lill~l-~ i ---------. --

A'i -C iUZU M,
V.. UL MB

FiueN isaiain f.cnecinerr

Umns- ux --2.10

system "Dining Philosophers" {
tool "Diner 1" "Diner"

tool "Diner 2" "Diner"
tool "Diner 3" "Diner"
tool "Fork 1" "Fork"
tool "Fork 2" '"Fork"

tool "Fork 3" "Fork"

bind "'Diner 1" "reqLeft" to "Fork I" "listen"

bind "Diner 1" "getLeft" to "Fork 1" "grant"
bind "Diner V "relLeft" to "Fork 1" "release

bind "Diner 1" "reqRglit" to "Fork 3" "listen"
bind "Diner 1" "getRght" to "Fork 3" "grant"

bind ')iner I" "relRght" to "Fork 3" "release"

bind "Diner 2" "reqLeft" to "Fork 3" "listen"
bind "Diner 2" "getLeft" to "Fork 2" "grant"
bind "Diner 2" "relLeft" to "Fork 2" "release
bind "Diner 2" "reqRght" to "Fork 1" "listen"
bind "Diner 2" "getRght" to "Fork 1" "grant"
bind "Diner 2" "relRglit" to "Fork 1" "release"

bind "Diner 3" "reqLeft" to "Fork 3" "listen"
bind "Diner 3" "getLeft" to "Fork 3" "grant"
bind "Diner 3" "relLeft" to "Fork 3" "release
bind "Diner 3" " eqRght" to "Fork 2" "listen"
bind "Diner 3" "getRght" to "lork 2" "grant"
bind "Diner 3" "relRght" to "Fork 2" "release"

Figure 7: A POLYLITH system specification with a connection error.

11

M.

Ina. LH Dinhr H tL~..

Controls PH Diner "-IE ,Mn

Paiate HM.. M

4.. Librares Mi.

-- NA 1 :4..61.fb
Quit Rat'UIM-..0cun

RH Dnne
sftn)r2: q~gh

MI-

4:12

N 51 ORJ

..o.. .. .

......+

RH~~~~~~'*.~X2**.

Jo~~R Dine 2IC ~ ~
S0 .

2
''yY ~ '........ ...+

f.0r 02 . '...e....*0

Figure ~~ Eain 9.pnigadeal.wno

113

____________Releasing___...

the tool. All three fork instances are labeled "Fork X: granted" because all getRght calls were
honored. This is the source of the problem. The diners are all right-handed. All (liners requested
and received their right forks first, putting the system into a deadlocked state. Any solution to
the dining philosophers problem must be acyclic in order to prevent deadlocks. We can delete
one of the nodes and substitute a new instance of a left-handed philosopher in its place from the
library. The corrected solution system is renamed and shown in Figure 11.

5 DISCUSSION

Configuration management systems tend to suffer from clutter problems created by the myriad of
module dependencies. This is especially true in large software systems and presents a problem to
visual configuration programming systems. MINION handles this problem by hiding unimportant
details or scaling them graphically. We can graphically select subgraphs of graphs and compress
them into nodes. A node that represents a compressed graph is simply a system description. Its
interface menu is a composite list of all internally unbound interfaces. For example. if we were to
compress the whole graph in Figure 11, the resulting system would have no internally unbound
interfaces because it is a complete system. Thus, its interface menu would be empty.

Libraries, on the other hand, are incomplete systems represented by compressed graphs. For
example, in the Dining Philosophers example. not all of the interfaces were explicitly bound.
The remaining interfaces (printf and writeln) were bound implicitly to library routines linked
directly into the executables of each instance. Recall that the links between modules need not
be message passing channels. The POLYLITH software bus makes binding decisions and generates
stubs based on protection domain properties. For example, links to local library modules are
simply dependency links that use local binding mechanisms.

The library nodes in Figures 3-11 are not visible in the viewport because they have been made
transparent. Compressed graphs may become transparent in order to reduce clutter. All links to
transparent nodes also become transparent. One of the enhancements we plan for MINION is the
ability to compress or make transparent all nodes with particular properties automatically.

By reducing visual clutter, we increase our capacity to abstract. We can focus our attention
on crucial details instead of all details. This is the case for link editors in more tightly-coupled
environments - invocations are implicitly bound by name. In MINION, binding mechanisms
are similarly transparent. For example, new modules can be spliced onto links. This is done by
moving or copying an instance of a module onto a link. The module must have a listener property
in order to be merged into an existing connection. For instance, we may wish to monitor message
passing activities in our Dining Philosophers system. It is a relatively simple task to instrument
each edge with a listener module. It would take six copies from the library palate: one listener
for each edge of the graph. On the other hand, Figure 12 illustrates the complexity of the textual
consequences of the rebindings.

14

M*U M~
Info. oe.

- Controls Compe

Palate Exe~iek- I .~

L bruin.- .urr

Co - ~lor Debug Off i~Fo*~ 1:(isleam) RHDner2geteft :51

..

-

.........

..P
."KIMQU.EM.............................

RdWfi ...

..

wr-=.

.515

...........

.. Conrl RHDne

U _ Paiate Fork 7 r

Libraries - _ ~~
NE . Color

** ~ ~ ~ ...*5 ufrr......

NMMor 2ok

__1N Hide

...
.......

&ok HDnr
Quit...

M :Ar

Figure. 11. A. corce.ouin.oteDnn hloohrspolm

...16.. .

system "Dining Philosophers" :

tool "Diner 1" "Diner"

tool "Diner 2" "Diner"

tool "Diner 3" "Diner"
tool "Fork 1" "Fork"
tool "Fork 2" "Fork"
tool "Fork 3" "Fork"
tool "LI" "Listener"
toot "L2" "Listener"
tool "L3" "Listener"
tool "L4" "Listener"
tool "L5" "Listener"
tool "L6" "Listener"

bind "Diner 1" "reqLeft" to "LI" "reqIn"

bind "LI" "reqOut" to "Fork 1" "listen"
bind "Diner 1" "getLeft" to "Li" "getOut"

bind "Li" "getln" to "Fork I" "grant"
bind "Diner I" "relLeft" to "LI" "relIn'

bind "Li" "relOut" to "Fork 1" "release
bind "Diner I" "reqRght" to "L6" "reqln"
bind "L6" "reqOut" to "Fork 3" "listen"
bind "Diner 1" "getRght" to "L6" "getOut"

bind "L6" "getIn" to "Fork 3" "grant"
bind "Diner 1" "relRght" to "L6" "relln"

bind "L6" "relOut" to "Fork 3" "release"
bind "Diner 2" "reqLeft" to "L3" "reqln"

bind "L3" "reqOut" to "Fork 2" "listen"
bind "Diner 2" "getLeft" to "L3" "getOut"
bind "L3" "getIn" to "Fork 2" "grant"

bind "Diner 2" "relLeft" to "L3" "relln"
bind "L3" "relOut" to "Fork 2" "release
bind "Diner 2" "reqRght" to "L2" "reqln"

bind "L2" "reqOut" to "Fork 1" "listen"
bind "Diner 2" "getRght" to "L2" "getOut"
bind "L2" "getIn" to "Fork 1" "grant"
bind "Diner 2" "relRght" to "L2" "reln"

bind "L2" "relOut" to "Fork 1" "release"
bind "Diner 3" "reqLeft" to "L5" "reqin"
bind "L5" "reqOut" to "Fork 3" "listen"
bind "Diner 3" "getLeft" to "L5" "getOut"
bind "LS" "getIn" to "Fork 3" "grant"
bind "Diner 3" "relLeft" to "L5" "relIn"

bind "LS" "relOut" to "Fork 3" "release
bind "Diner 3" "reqRght" to "IL4" "reqln"
bind "L4" "reqOut" to "Fork 2" "listen"
bind "Diner 3" "getRght" to "L4" "getOut"

bind "L4" "getin" to "Fork 2" "grant"
bind "Diner 3" "relRght" to "L4" "relIn"

bind "L4" "relOut" to "Fork 2" "release"

Figure 12: An instrumented POLYLITH system specification for the Dining Philosophers problem.

17

MINION is a general-purpose configuration management tool. It can be used to create UNIX 2

riakefiles [Feld78 and visualize petri nets, as well as to edit and execute POLYLITH MIL specs.
More specifically, MINION is a general-purpose connected graph editor and simulator. We needed
such a tool in order to visualize many types of nested structures: MIL specs. makefiles. and
symbol tables. Each system places constraints on the construction of these connected graphs.

MINION can accept different "grammars" which specify the semantic actions appropriate for a
particular model.

MINION was written in C and it uses the PROTEGE (PROTotype Extensible Graph Editor) li-
brary. The PROTEGE library routines are written in C and PostScript and the system currently
"uns only in Sun's Network extensible Window System (NeWS) 'GoRA891. It implements the
general-purpose connected graph edit and display functions within the NeWS server. The MNIoN
client specifies node properties. linking semantics, and implements other MINION vlewport control
functions e.g.. I/0. transparency). Other tools, such as -he ,iiier windows and fork processes
in Figure 10. may connect to a MINION viewport at runtime 1i vided : ha',. context
number. This information is provided in stub headers createc ,v th ',L\L :or each
11odule.

6 SUMMARY

MINION has provided us with an extensible environment upon which to experiment with software
s stem designs. We can quickly prototype new implementations based on ideas from old systems.

it has allowed is to explore many different constructions that are textually toiious and difficult.

Visual programming systems are especially valuable in problem areas that havw ,iirect phnvsical
analogs. They enable us with new perspectives and insights into complex problems :ike link
editing in heterogeneous, distributed software systems. Distributed applications are comprised of
connected but autonomous protection domains that can be represented graphically so that we can
visualize boundaries crossings. Designers of software systems that model physical systems also
benefit from visual approaches. The Dining Philosophers problem is one such example. Finally.
errors in connectivity can be more easily detected visually with an "at a glance" attention to
detail. Such systems can complement textual representations where detail is dealt with on a
more precise scale.

2UNIX is a trademark of AT&T Bell Laboratories.

18

References

[PuCa89] Purtilo, J., and J. Callahan, Parse-Tree Annotations, Communications of the AC.1J.
(December 1989), pp. 1467-1477.

[Dijk65] Dijkstra, E. W., Cooperating Sequential Processes, Technical Report EWD-123, Tech-
nological University, Eindhoven, the Netherlands, (1965).

[Feld78] Feldman, S., Make - a program for maintaining computer programs. Bell Laboratories.
1978.

[GoRA89] Gosling, J., D. Rosenthal, and M. Arden, The NeWS Book. Springer-Verlag, New
York. 1989.

rPurt86I Purtilo. J.. A software interconnection technology to support specification of com-
putational environments. Doctoral Dissertation, University of Illinois Department of
Computer Science Report UIUCDCS-R-86-1269, (October 1986).

19

